Bhutan’s environmental success a pleasing paradox

Bhutan is heads and shoulders above other countries in maintaining its biodiversity and cultural assets, writes Ross Jeffree. Still, there are downsides.

In a time of diminishing global biodiversity, Bhutan’s conservation achievements read like an environmentalist’s heavenly dream. More than 50% of its land area is designated as protected in national parks, nature reserves and biological corridors. More than 80% of the country is covered by natural forests, and it has a reafforestation program that is further increasing this figure. And its record on carbon sequestration is greater than its national emissions by a factor of two.

Bhutan’s environmental successes are running so counter-current to most other countries, they represent a “pleasing paradox”. And they demonstrate that it is possible to preserve very high biodiversity while achieving sustainable development.

Bhutan’s counter intuitive development goals

For Bhutan, environmental sustainability is both the primary objective and the starting point for national development.

Within its 2008 national constitution, the government pledged to protect, conserve and improve its pristine environment and safeguard the biodiversity of the country.

The flip side is that all Bhutanese are formally held responsible under the constitution to protect the environment.

  Rob Brooks

 The country is transcending the classical tension between economic development and environmental conservation by developing sectors that require continuing environmental protection to be sustainable.

This has included a “run-of-the-river” hydroelectricity development which requires the preservation of watersheds in natural forest. Their national needs for electricity are met while generating foreign exchange with India, which has expanding energy needs.

Bhutan has also developed a “low impact-high value” approach to tourism, guarding against some of the negative, culturally destructive aspects of mass tourism.

Controlled pricing and limiting the numbers of tourists and their access to certain areas is also minimising unwanted impacts.

They have built an eco-tourism industry around protected areas. This ensures the conservation of biodiversity and landscapes that particularly attract the eco-tourist. It also generates income for communities living with problematic wildlife.

Resolving human-wildlife conflicts

Bhutan’s success in growing wildlife populations can often lead to conflicts with communities living within protected areas.

Snow leopards can be very effective predators of domestic yak, often the primary source of livelihood and wealth of yak-herding communities.

To protect snow leopard populations, Bhutanese yak herders are compensated by the community for the loss of their livestock.

 These communities who experience high losses to snow leopards are renowned for their unbelievable level of tolerance to these beautiful predators that are so attractive to eco-tourists.

However, nationally it felt unjust that communities in prime snow leopard land should bear the full brunt of their predation.

Community-based compensation and herd insurance programs, funded by revenues from eco-tourism and non-timber forest products, are transforming snow leopards into an economic asset.

This brings tangible benefits rather than liabilities to the local community.

Why is environmental conservation so important to Bhutan?

Part of the answer seems to lie in aspects of Bhutan’s metaphysical heritage. The original religion of Bon Shamanism inculcates reverence for the local deities and spirits that inhabit components of the landscape. Supernatural qualities are ascribed to animals.

Forests are seen as a valuable source of spiritual health, necessitating their conservation. Moreover, Mahayana Buddhism, that supplanted Bon, aspires to deeply perceive the interdependence of all things and events.

A very strong eco-ethical sentiment is found in the Buddhist belief that all actions should bring the most help and least harm to other sentient beings.

What can we learn from Bhutan?

It is important to firstly acknowledge that Bhutan’s Eastern metaphysics, which ascribe sentience to other animals, is a very similar viewpoint to the Western scientific tradition.

Our ultimate materialist, Charles Darwin, was willing to look for sentience in worms and he found it. Recent investigations have found sentience in a variety of taxa, beginning with ants.

Moreover, Darwin proclaimed: “the love for all living creatures is the most noble attribute of man.”

This is not so far from Bhutan’s ethic for compassionate conservation. But the priority we give to biodiversity conservation and sustainability is much lower in our list of concerns.

We could learn to celebrate our wildlife in festivals and art forms as the Bhutanese do, acknowledging they are also sentient. In doing so, we might care for them more.

And maybe the compassionate Australian ethic of a “fair go for all” could be extended to embrace all the sentient beings that we share our continent with.

Reference – http://www.sbs.com.au/news/article/2013/12/29/comment-bhutans-environmental-success-pleasing-paradox

Advertisements

Potato power: the spuds that could light the world

With a simple trick, the humble spud can be made into a battery, so could potato powered homes catch on?

Mashed, boiled, baked or fried? You probably have a preference for your potatoes. Haim Rabinowitch, however, likes his spuds “hacked”.

For the past few years, researcher Rabinowitch and colleagues have been pushing the idea of “potato power” to deliver energy to people cut off from electricity grids. Hook up a spud to a couple of cheap metal plates, wires and LED bulbs, they argue, and it could provide lighting to remote towns and villages around the world.

They’ve also discovered a simple but ingenious trick to make potatoes particularly good at producing energy. A single potato can power enough LED lamps for a room for 40 days,” claims Rabinowitch, who is based at the Hebrew University of Jerusalem. The idea may seem absurd, yet it is rooted in sound science. Still, Rabinowitch and his team have discovered that actually launching potato power in the real world is much more complex than it first appears. While Rabinowitch and team have found a way to make potatoes produce more power than usual, the basic principles are taught in high school science classes, to demonstrate how batteries work.

To make a battery from organic material, all you need is two metals – an anode, which is the negative electrode, such as zinc, and a cathode, the positively charged electrode, such as copper. The acid inside the potato forms a chemical reaction with the zinc and copper, and when the electrons flow from one material to another, energy is released. 

This was discovered by Luigi Galvani in 1780 when he connected two metals to the legs of a frog, causing its muscles to twitch. But you can put many materials between these two electrodes to get the same effect. Alexander Volta, around the time of Galvani, used saltwater-soaked paper. Others have made “earth batteries” using two metal plates and a pile of dirt, or a bucket of water.

Super spuds

Potatoes are often the preferred vegetable of choice for teaching high school science students these principles. Yet to the surprise of Rabinowitch, no one had scientifically studied spuds as an energy source. So in 2010, he decided to give it a try, along with PhD student Alex Goldberg, and Boris Rubinsky of the University of California, Berkeley.

“We looked at 20 different types of potatoes,” explains Goldberg, “and we looked at their internal resistance, which allows us to understand how much energy was lost by heat.”

They found that by simply boiling the potatoes for eight minutes, it broke down the organic tissues inside the potatoes, reducing resistance and allowing for freer movement of electrons– thus producing more energy. They also increased the energy output by slicing the potato into four or five pieces, each sandwiched by a copper and zinc plate, to make a series. “We found we could improve the output 10 times, which made it interesting economically, because the cost of energy drops down,” says Goldberg.

“It’s low voltage energy,” says Rabinowitch, “but enough to construct a battery that could charge mobile phones or laptops in places where there is no grid, no power connection.”

Their cost analyses suggested that a single boiled potato battery with zinc and copper electrodes generates portable energy at an estimated $9 per kilowatt hour, which is 50-fold cheaper than a typical 1.5 volt AA alkaline cell or D cell battery, which can cost $49–84 per kilowatt hour. It’s also an estimated six times cheaper than standard kerosene lamps used in the developing world.

Which raises an important question – why isn’t the potato battery already a roaring success?

In 2010, the world produced a staggering 324,181,889 tonnes of potatoes. They are the world’s number one non-grain crop, in 130 countries, and a hefty source of starch for billions around the world. They are cheap, store easily, and last for a long time.

With 1.2 billion people in the world lacking access to electricity, a simple potato could be the answer– or so the researchers thought. “We thought organisations would be interested,” says Rabinowitch. “We thought politicians in India would give them out with their names inscribed on them. They cost less than a dollar.”

Yet three years on since their experiment, why haven’t governments, companies or organisations embraced potato batteries? “The simple answer is they don’t even know about it,” reasons Rabinowitch. But it may be more complicated than that.

First, there’s the issue of using a food for energy. Olivier Dubois, senior natural resources officer at the United Nations Food and Agriculture Organisation (FAO), says that using food for energy – like sugar cane for biofuels – must avoid depleting food stocks and competing with farmers.

“You first need to look at: are there enough potatoes to eat? Then, are we not competing with farmers making income from selling potatoes?” he explains. “So if eating potatoes is covered, selling potatoes is covered, and there’s some potatoes left, then yes, it can work”

In a country like Kenya, the potato is the second most important food for families after maize. Smallholder farmers produced around 10 million tonnes of potatoes this year, yet around 10-20% were lost in post-harvest waste due to lack of access to markets, poor storage conditions, and other issues, according to Elmar Schulte–Geldermann, potato science leader for sub–Saharan Africa at the International Potato Center in Nairobi, Kenya. The potatoes that don’t make it to the market could easily be turned into batteries. 

Pithy answer

Yet in Sri Lanka, for instance, the locally available potatoes are rare and expensive. So a team of scientists at the University of Kelaniya recently decided to try the experiment with something more widely available, and free – plantain piths (stems).

Physicist KD Jayasuriya and his team found that the boiling technique produced a similar efficiency increase for plantains – and the best battery performance was obtained by chopping the plantain pith after boiling.

With the boiled piths, they found they could power a single LED for more than 500 hours, provided it is prevented from drying out. “I think the potato has slightly better current, but the plantain pith is free, it’s something we throw away,” says Jayasuriya.

Despite all this, some are sceptical of the feasibility of potato power. “In reality, the potato battery is essentially like a regular battery you’d buy at the store,” says Derek Lovley at the University of Massachusetts, Amherst. “It’s just using a different matrix.” While the potato helps to prevent energy being lost to heat, it is not the source of the energy – that’s actually extracted via the corrosion of the zinc. “It’s sacrificial – the metal is degrading over time,” says Lovley. This means you’d have to replace the zinc – and of course the potato or plantain pith – over time.

Still, zinc is quite cheap in most developing countries. And Jayasuriya argues that it could still be more cost effective than a kerosene lamp. A zinc electrode that lasts about five months would cost about the same as a litre of kerosene, which fuels the average family home in Sri Lanka for two days. You could also use other electrodes, like magnesium or iron.

But potato advocates must surmount another problem before their idea catches on: consumer perception of potatoes. Compared with modern technologies like solar power, potatoes are perhaps less desirable as an energy source.

Gaurav Manchanda, founder of One Degree Solar, which sells micro-solar home systems in Kenya, says people buy their products for more reasons than efficiency and price. “These are all consumers at the end of the day. They need to see the value in it, not only in terms of performance, but status,” he explains. Basically, some people might not want to show off their potato battery to impress a neighbor.

Still, it cannot be denied that the potato battery idea works, and it appears cheap. Advocates of potato power will no doubt continue to keep chipping away.

Reference – http://www.bbc.com/future/story/20131112-potato-power-to-light-the-world

World Environment Day

Today is World Environment Day. It is an annual event that is aimed at being the biggest and most widely celebrated global day for positive environmental action.

The theme for this year’s World Environment Day celebrations is Think.Eat.Save. Think.Eat.Save is an anti-food waste and food loss campaign that encourages you to reduce your foodprint. According to the UN Food and Agriculture Organization (FAO), every year 1.3 billion tonnes of food is wasted. This is equivalent to the same amount produced in the whole of sub-Saharan Africa. At the same time, 1 in every 7 people in the world go to bed hungry and more than 20,000 children under the age of 5 die daily from hunger.

Given this enormous imbalance in lifestyles and the resultant devastating effects on the environment, this year’s theme – Think.Eat.Save – encourages you to become more aware of the environmental impact of the food choices you make and empowers you to make informed decisions.

While the planet is struggling to provide us with enough resources to sustain its 7 billion people (growing to 9 billion by 2050), FAO estimates that a third of global food production is either wasted or lost. Food waste is an enormous drain on natural resources and a contributor to negative environmental impacts.

This year’s campaign rallies you to take action from your home and then witness the power of collective decisions you and others have made to reduce food waste, save money, minimise the environmental impact of food production and force food production processes to become more efficient.

If food is wasted, it means that all the resources and inputs used in the production of all the food are also lost. For example, it takes about 1,000 litres of water to produce 1 litre of milk and about 16,000 litres goes into a cow’s food to make a hamburger. The resulting greenhouse gas emissions from the cows themselves, and throughout the food supply chain, all end up in vain when we waste food.

In fact, the global food production occupies 25% of all habitable land and is responsible for 70% of fresh water consumption, 80% of deforestation, and 30% of greenhouse gas emissions. It is the largest single driver of biodiversity loss and land-use change.
Making informed decision therefore means, for example, that you purposefully select foods that have less of an environmental impact, such as organic foods that do not use chemicals in the production process. Choosing to buy locally can also mean that foods are not flown halfway across the world and therefore limit emissions.

So think before you eat and help save our environment! 🙂

Think.Eat.Save – http://www.thinkeatsave.org/

Reference – http://www.unep.org/wed/theme/